
Short CommuniCation

J Rehabil Med 2014; 46: 819–823

J Rehabil Med 46© 2014 The Authors. doi: 10.2340/16501977-1836
Journal Compilation © 2014 Foundation of Rehabilitation Information. ISSN 1650-1977

Objective: To determine whether kinematic algorithms can 
distinguish subjects with chronic non-specific low back pain 
from asymptomatic subjects and subjects simulating low 
back pain, during trunk motion tasks.
Design: Comparative cohort study.
Subjects: A total of 90 subjects composed 3 groups; 45 chron-
ic non-specific low back pain patients in the CLBP group; 45 
asymptomatic controls people in the asymptomatic controls 
group. 20/45 subjects from the asymptomatic controls group 
composed the CLBP simulators group as well.
Method: During performance of 7 standardized trunk mo-
tion tasks 6 spinal segments from the kinematic spine model 
were recorded by 8 infrared cameras. Two logit scores, for 
range of motion and speed, were used to investigate differ-
ences between the groups. Group allocation based on logit 
scores was also calculated, allowing the assessment of sensi-
tivity and specificity of the algorithms. 
Results: For the 90 subjects (pooled data), the logit scores for 
range of motion and speed demonstrated highly significant 
differences between groups (p < 0.001). The logit score means 
and standard deviation (SD) values in the asymptomatic 
group (n = 45) and chronic non-specific low back pain group 
(n = 45), respectively, were –1.6 (SD 2.6) and 2.8 (SD 2.8) 
for range of motion and –2.6 (SD 2.5) and 1.2 (SD 1.9) for 
speed. The sensitivity and specificity (n = 90) for logit score 
for range of motion were 0.80/0.82 and for logit score for 
speed were 0.80/0.87, respectively.
Conclusion: These results support the validity of using 2 
movement algorithms, range of motion and speed, to dis-
criminate asymptomatic subjects from those with low back 
pain. However, people simulating low back pain cannot be 
distinguished from those with real low back pain using this 
method. 
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INTRODUCTION

Chronic non-specific low back pain (CLBP) is a growing problem 
in Western industrialized countries, which brings diagnostic and 
treatment challenges (1–4). From a diagnostic point of view, in 
general, people with CLBP have no clear patho-anatomical features 
distinguishing them from asymptomatic subjects. For example, 
there is a poor correlation between features seen on spinal imaging 
and symptoms of low back pain (LBP) (1, 3, 5). Thus, diagnosis of 
non-specific LBP is based mainly on subjective and physical clini-
cal examination criteria (1–3, 6–9). Kinematic analysis of trunk 
motion appears promising in the diagnosis and discrimination of 
people with non-specific LBP (1, 9–12). Some of these features 
may also enable differentiation into treatment specific sub-groups, 
which may have value in the management of LBP (13).

Our previous study (12) showed that kinematic tools are useful 
in identifying impairments in people with CLBP, both quantita-
tively (range of motion, speed and acceleration) and qualitatively 
(motion signatures), when single and combined planes of move-
ment are investigated (1, 10–13). The study identified 2 kinematic 
algorithms (logit scores) that could be used to distinguish people 
with CLBP from asymptomatic controls on the basis of a binary 
logistic regression analysis (12). The first algorithm is an index 
for range of motion (ROM) and the second is an index for speed 
of movement (SPEED). The sensitivity and specificity of the 
logits for these algorithms has been reported previously (12). To 
our knowledge, no studies have investigated whether movement 
algorithms can correctly identify people simulating LBP from 
those with actual LBP in order to address the external validity 
(i.e. the generalizability) of the research findings. 

The aim of this study was to evaluate the external validity 
and generalizability of previously reported algorithms in the 
quantitative assessment of spinal movement impairment in an 
independent sample of asymptomatic controls, people simulat-
ing LBP, and those with CLBP.

METHODS
Subjects 
This study comprised 90 subjects, of whom 50 were from a previous 
investigation (25 healthy controls and 25 subjects with CLBP) (12), 
together with 40 new subjects (20 asymptomatic subjects who repre-
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sented the healthy simulators and 20 with CLBP). anthropometric data 
are shown in Table i. The CLBP group included men and women re-
cruited from Cliniques universitaires St-Luc (Woluwé - Saint - Lambert,  
Belgium). at the time of the experiment, these subjects had CLBP with or 
without radiating pain no further than the knee (Quebec Task force 1–2 cat-
egories) for at least 12 weeks and had clinical physical examination features 
of spinal movement impairment. The asymptomatic subjects had no history 
of LBP for at least 6 months prior to the experiment. The study protocol 
was approved by the human research ethics committee of the institution.

Protocol and material 
Seven standardized trunk motion tasks, described below, were assessed 
in the kinematic spine model, and recorded by 8 infrared cameras 
(ELiTE-BTS, Milan, italy). The kinematic spine model, the trunk 
movement standardization procedure, data collection and statistical 
analysis have been described in a previous study (12).

all subjects were asked to follow 4 rules during movement tasks, 
which were performed in a seated position: (i) begin and end each 
movement with a neutral spine posture; (ii) to move at a self-determined 
(spontaneous) speed through the largest possible range; (iii) to maintain 
contact between the ischial tuberosities and the stool; (iv) and to adhere 
strictly to the plane of motion specified by each task. Each movement was 
repeated 15 times and recorded after the fifth movement (n = 10 trials). 

Twenty asymptomatic subjects formed the LBP simulators group. 
These subjects were asked firstly to perform all the trunk tests in a natural 
way (asymptomatic controls) and, secondly, to repeat the task simulat-
ing CLBP (simulators) while carrying out each movement task (14). 

The trunk motion tasks were as follows:
Anterior trunk flexion. Subjects positioned themselves with their hands 
over their ears and their elbows forward, and then flexed the trunk as 
far as possible with respect to the sagittal plane.

Lateral trunk side-bending left and right. Subjects crossed their arms 
on their chest, and then inclined their trunk in the frontal plane.

Rotation left and right. Subjects crossed their arms on their chest, and 
rotated their head and shoulders to the side as far as possible, while 
respecting the transverse plane. 

Anterior trunk flexion with left and right rotation (rotated pelvis). 
The subject sat on the stool with the pelvic rotated 30° to the left 
or right, and the subject was given the same instructions as in the 
anterior flexion task. 

Statistical analysis
Comparison of the kinematic variables between groups was carried out 
using 1-way analysis of variance with pairwise multiple comparison 
procedures (Holm-Sidak method, factor groups) (Sigmastat® 3.5, Systat 
Software, inc., San jose, uSa) (Table ii). 

Binary logistic regression analysis was previously used to evaluate the 
kinematic spine model in each group, with 2 logit scores (LS) calculated 
for ROM and SPEED (see Table iii) (12). For this, we calculated an index 
to enable discrimination between groups using binary logistic regression 
analyses (stepwise forward likelihood ratio in SPSS). These analyses 
were applied only to variables found to differ significantly by Student’s 

t-tests (n = 26). These variables were assigned as independent variables, 
and group membership (0 = healthy, 1 = chronic LBP) was the dependent 
variable. Before regression analyses were performed, the variance inflation 
factor (viF) was estimated for each of the 26 selected variables, in order 
to remove variables with strong correlation (viF > 10); 17 variables were 
finally selected and included in the logistic regression (12).

The generalizability of our previous results to correctly identify 
people with the use of LS was the main goal of this study. Therefore, 
we investigated the sensitivity and specificity of the previously de-
termined algorithms using the probability equation (Table iii) on the 
40 new subjects in the present study, with the following equation: 

Sensitivity = true positives/(true positives + false negatives)
Specificity = true negatives/(true negatives + false positives)

Following this, the overall sensitivity and specificity were calculated 
by pooling the results of LS for ROM and SPEED from both studies 
(n = 90 subjects) using the receiver operating characteristic (ROC) 
curves (MedCalc software,version 11.5, Mariakerke, Belgium). 

RESuLTS

The results of the between-groups’ comparison of kinematic 
variables of each spinal segment in each task as well as for 
kinematic algorithms (ROM and SPEED) are shown in Table ii. 

Concerning the LS for ROM (n = 40), a highly significant 
difference was found between the groups with p-value < 0.001 
(power of 1.000 with alpha = 0.05). The mean and standard 
deviation (SD) of LS for ROM was –0.47 (SD 2.5) in the asymp-
tomatic control group (n = 20); 3.2 (SD 3.4) in the CLBP group 
(n = 20); and 5.6 (SD 3.5) in the LBP simulator group (n = 20). 
in addition, the LS for SPEED demonstrated highly significant 
differences between the groups, with p-value < 0.001 (power of 
1.000 with alpha = 0.05). The mean of LS for SPEED was –2.9 
(SD 2.5) in the asymptomatic control group; 1.1 (SD 2.5) in 
the CLBP group; and 2.1 (SD 2.1) in the LBP simulator group. 

When matching subjects of both the current and previous 
studies (n = 90), the comparison between the asymptomatic 
subjects (n = 45) with those with LBP (n = 45) revealed highly 
significant differences (p < 0.001; power of 1.000 and al-
pha = 0.05) for the LS’s ROM and SPEED. The means and SD 
values for the combined asymptomatic group and CLBP group, 
respectively, for LS ROM were –1.6 (SD 2.6) and 2.8 (SD 
2.8); and for LS SPEED were –2.6 (SD 2.5) and 1.2 (SD 1.9).

using the probability equation presented in Table iii, we calcu-
lated the probability that each new subject in this study had LBP.
For the index of LS ROM: 
• asymptomatic controls (n = 20): 8 were positive and 12 were 

negative; 60% of healthy controls were correctly classified.
• LBP simulators (n = 20): 19 were positive and 1 was nega-

tive; 5% of healthy simulators were correctly classified.

Table I. Baseline characteristics of asymptomatic subjects and patients with chronic non-specific low back pain (CLBP)

Asymptomatic controls
and LBP simulators CLBP

Asymptomatic controls
from previous study

CLBP from previous 
study

Male/Female, n 11/9 (n = 20) 11/9 (n = 20) 10/15 (n = 25) 12/13 (n = 25)
age, years, mean (SD) 39.9 (13.5) 45.1 (11.6) 40 (11) 42 (9)
Body mass index, mean (SD) 23.5 (2.8) 27.4 (3.5) 23.3 (2.5) 25.2 (3.2)
visual analogue scale, mean (SD) 0.2 (0.4) 2.9 (1.7) 0 2.5 (1.5)
Oswestry Disability index (%), mean (SD) 1.6 (1.8) 17.9 (8.2) 0 19.8 (8.6)

SD: standard deviation; LBP: low back pain.

J Rehabil Med 46



821Kinematic algorithms to identify CLBP

Table II. Asymptomatic controls and low back pain (LBP) simulators vs chronic non-specific low back pain patients, one-way analysis of variance of 
each spinal segment in each task

Trunk tasks

Asymptomatic 
controls
(n = 20)
Mean (SD)

CLBP
(n = 20)
Mean (SD)

CLBP simulators
(n = 20)
Mean (SD)

Comparisons for factor

Asymptomatic 
controls
vs
LBP

CLBP
vs
LBP simulators

CLBP simulators
vs
asymptomatic 
controls

Flexion
ROM 
LLS, ° 49.1 (17.1) 45.6 (22.8) 32.2 (17.2) No No yes*
HLS, ° 55.1 (16.7) 49.8 (22.6) 37.6 (18.6) No No yes*
TLS, ° 61.8 (16.7) 54.1 (22.9) 42.9 (20.4) No No yes*
LTS, ° 80.5 (17.2) 68.9 (22.1) 52.5 (23.9) No yes* yes***
HTS, ° 91.8 (17.5) 76.7 (23.9) 60.2 (23.3) yes* yes* yes***

SPEED 
LLS, °/s 128.7 (49.1) 87.1 (40.7) 59.7 (27.5) yes** yes* yes***
HLS, °/s 142.1 (48.5) 91.8 (42.1) 67.4 (28.5) yes*** No yes***
TLS, °/s 162.1 (48.1) 103.1 (43.6) 80.3 (30.1) yes*** No yes***

Rotation, left
ROM 
SS, ° 83.1 (12.8) 64.2 (13.9) 57.1 (13.5) yes*** No yes***

Rotation, right
ROM

   

SS, ° 81.2 (11.9) 67.1 (12.2) 54.5 (13.4) yes*** yes** yes***
Flexion with rotation, left 
ROM 
LLS, ° 39.3 (15.3) 30.9 (17.3) 23.8 (16.3) No No yes**
HLS, ° 45.4 (14.4) 35.8 (18.1) 28.1 (17.3) No No yes**
TLS, ° 52.1 (14.2) 40.5 (19.1) 32.4 (18.8) No No yes***
LTS, ° 69.5 (15.5) 54.9 (19.8) 42.9 (21.4) yes* No yes***
HTS, ° 81.2 (17.9) 65.4 (21.1) 51.3 (20.8) yes* yes* yes***

SPEED   
LLS, °/s 109.5 (46.4) 66.9 (36.4) 47.9 (27.5) yes*** No yes***
HLS, °/s 122.7 (45.5) 74.1 (38.6) 54.3 (29.1) yes*** No yes***
TLS, °/s 142.7 (45.2) 86.6 (40.8) 65.1 (32.1) yes*** No yes***

Flexion with rotation, right 
ROM 
LLS, ° 41.1 (13.1) 29.7 (18.1) 22.9 (16.1) No No yes***
HLS, ° 47.2 (11.9) 33.9 (18.5) 26.7 (17.3) yes* No yes***
TLS, ° 54.1 (11.4) 38.1 (19.5) 30.6 (18.9) yes** No yes***
LTS, ° 73.2 (11.7) 51.9 (19.5) 43.4 (20.7) yes*** No yes***
HTS, ° 84.8 (13.2) 61.7 (20.2) 49.1 (22.5) yes*** yes* yes***

SPEED 
LLS, °/s 111.4 (39.2) 63.1 (35.9) 46.7 (26.1) yes*** No yes***
HLS, °/s 124.4 (38.7) 69.4 (37.5) 52.6 (28.4) yes*** No yes***
TLS, °/s 144.1 (38.9) 80.8 (40.1) 64.6 (33.1) yes*** No yes***

LS ROM –0.47 (2.5) 3.2 (3.4) 5.6 (3.5) yes*** yes* yes***
LS SPEED –2.9 (2.5) 1.1 (2.5) 2.1 (2.1) yes*** No yes***

all pairwise multiple comparison procedures (Holm-Sidak method), comparison for factors (groups): *p < 0.05; **p < 0.005; ***p < 0.001.
ROM: range of motion (°); SPEED: velocity (°/s). LLS: low lumbar spine (S2–L3); HLS: high lumbar spine (L3–T12); TLS: total lumbar spine 
(S2–T12); LTS: low thoracic spine (T12–T7); HTS: high thoracic spine (T7–C7); SS: shoulder segment (acLeft–acRight); SD: standard deviation; 
LS ROM: logit score for range of motion; LS SPEED: logit score for speed.

Table III. Kinematic algorithms and probability equations from previous study (12) 

Logit score
Sensitivity/ 
specificity,%

Cut-off 
value

Area under ROC 
curve (95% Ci)

Standard 
error

p-value 
(area = 0.5)

Probability 
(α = 0.05)

LS ROM = 17.77–(0.074 × LTS°)–(0.11×SS°)–(0.059×TLS°) 92/84 –0.6507 0.95 (0.85–0.99) 0.028 < 0.0001
P = 

eLSrom

1 + eLSrom

LS SPEED = 6.19–(0.063 × TLS°/s) 92/80 –0.3544 0.90 (0.77–0.96) 0.050 < 0.0001
P = 

eLSspeed

1 + eLSspeed

p > 0.5 = patient affected by chronic non-specific low back pain. ROC: receiver operating characteristic; Ci: confidence interval; LS ROM: logit score 
for range of motion; LTS°: lower thoracic spine ROM in flexion; SS°: shoulder segment ROM in right rotation; TLS°: total lumbar spine ROM in 
flexion with left rotation; LS SPEED: logit score for speed; TLS°/s: total lumbar spine speed in flexion with right rotation. 
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• CLBP (n = 20): 4 were negative and 16 were positive; 80% 
of LBP subjects were correctly classified.

 Based on the data of asymptomatic controls and CLBP subjects, 
the sensitivity was 0.80, with specificity 0.60. Positive predictive 
value (PPv) was 0.67 and negative predictive value (nPv) 0.75.

For the index of LS SPEED:
• asymptomatic controls (n = 20): 2 were positive and 18 were 

negative; 90% of healthy controls were correctly classified.
• LBP simulators (n = 20): 20 were positive and 0 was nega-

tive; 0% of healthy simulators were correctly classified.
• CLBP (n = 20): 7 were negative and 13 were positive; 65% 

of LBP subjects were correctly classified.
 Based on the data of asymptomatic controls and CLBP 

subjects, the sensitivity was 0.65 and specificity 0.90, with 
PPv 0.87 and nPv 0.72.

using LS of ROM and SPEED with ROC curves analysis on 
all subjects of both studies (n = 90), we calculated an overall 
sensitivity/specificity:
• For LS ROM: sensitivity was 0.80 (0.65–0.90) and specific-

ity 0.82 (0.68–0.92) with a cut-off score of 0.77 (area under 
the ROC curve: 0.88 with standard error: 0.03 and significant 
level p < 0.0001; youden index: 0.62).

• For LS SPEED: sensitivity was 0.80 (0.65–0.90) and 
specificity 0.87 (0.73–0.95) with a cut-off score of 0.11 
(area under the ROC curve: 0.88 with standard error: 0.03 
and significance level p < 0.0001; youden index: 0.66).

The LS pooled values of each subject for groups CLBP (n = 45) 
and asymptomatic controls (n = 45) are shown in Figs 1 and 2. 

DiSCuSSiOn

The kinematic algorithms ROM and SPEED clearly dis-
criminated the groups with highly significant differences. in 

comparison with people with CLBP, the kinematic values for 
people voluntarily simulating LBP were lower, and the LS 
differed significantly (Table ii). When the healthy subjects 
tried to simulate CLBP, they were unable to mimic the true 
kinematics of people with chronic LBP. During each movement 
task the healthy subjects exaggerated the spinal movement 
impairments, as if they were affected by an acute LBP. 

The present findings also confirm those of the previous study 
concerning the data from the trunk lateral flexion task, which 
did not differ significantly between the groups. This task was 
once again not useful in discriminating subjects with chronic 
LBP, at least when carried out in a seated position (12).

The sensitivity and specificity of both LS (ROM and SPEED) 
were previously found to be excellent in discriminating peo-
ple with CLBP (12). However, when applying the previously 
determined probability equation to a new independent sample 
of subjects, we found only a moderate to good level of sensitiv-
ity and specificity. Despite this, when data from both studies 
are pooled, the ROC curves analysis of both LS (ROM and 
SPEED) revealed improved overall sensitivity and specificity. 

The results of the present and previous study (12) indicate 
that the algorithms ROM and SPEED provide useful discrimi-
nation between populations. These kinematic measures may be 
helpful in sub-grouping people with movement impairment in 
LBP, which may have potential benefit in future clinical trials. 
For example, the targeting of specific interventions, such as 
manual therapy, might be better suited to people with certain 
movement impairments identified through these algorithms. 
This requires further investigation. 

The present study has several limitations. Simulating CLBP 
is problematic because of the inherent multifactorial nature of 
CLBP, which influences the kinematic outputs during move-
ment. Subjects may have had difficulty imagining and carrying 
out the simulation of CLBP. in the case of CLBP, pain may 

Fig. 1. Scatter plot of pooled data for logit scores of range of motion (ROM) of asymptomatic controls (n = 45) and subjects with chronic non-specific 
low back pain (LBP) (n = 45).
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arise from a variety of causes. The cognitive interpretation of 
pain has multiple psycho-social influences (e.g. misrepresenta-
tion of body schema, anxiety, depression, education, beliefs, 
negativism, catastrophization, lifestyle). in turn, this may 
influence central sensitization, resulting in altered “outputs”, 
in particular movement behaviours and patterns of impairment 
seen when examining patients with CLBP (2, 3, 15). all these 
elements are very difficult, if not impossible, to simulate in 
our sample of LBP simulators. Moreover, we should not forget 
a possible more important Hawthorne learning effect in the 
subjects simulating LBP that may have influenced the simulated 
patterns of movement. 

in conclusion, these results validate the use and generaliz-
ability of both kinematic algorithms for the discrimination of 
spinal movement impairments between healthy controls and 
patients with CLBP. However, subjects who were simulating 
CLBP could not be correctly classified by our method. This 
validation study supports the use of this method to objectively 
evaluate the efficacy of physical manual therapy treatment in 
future clinical trials. 
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