
Acta Derm Venereol 96

REVIEW ARTICLE

Acta Derm Venereol 2016; 96: 147–156

© 2016 The Authors. doi: 10.2340/00015555-2220
Journal Compilation © 2016 Acta Dermato-Venereologica. ISSN 0001-5555

Increased expression of cathelicidin antimicrobial pep-
tide (CAMP) is related to the pathogenesis of rosacea. 
CAMP plays a crucial role in antimicrobial defences, 
such as the killing of mycobacteria. CAMP gene expres-
sion is regulated by vitamin D-dependent (VDR) and 
vitamin D-independent (C/EBPα) transcription factors. 
VDR-dependent CAMP expression is sufficient during 
the summer months in Nordic countries, but insufficient 
during Nordic winters, due to low ultraviolet (UV) levels. 
Historically, the Celts may have overcome this geograp-
hical disadvantage of deficient CAMP production during 
the winter through an as-yet undefined acquired muta-
tion that activates the alternative vitamin D-independent 
CAMP promoter C/EBPα. C/EBPα is the downstream 
transcription factor of Toll-like receptor (TLR)-media-
ted innate immune reactions and endoplasmic reticulum 
(ER) stress responses. At the molecular level, all clini-
cal trigger factors for rosacea can be regarded as ER 
stressors. A mutation-based upregulation of ER stress 
responsiveness in rosacea may thus explain patients’ re-
duced threshold for ER stressors. It is notable that ER 
stress upregulates the potent lipid-mediator sphingosi-
ne-1-phosphate (S1P), which explains multiple patho-
logical aberrations observed in rosacea skin. Enhanced 
ER stress/S1P signalling in rosacea appears to compen-
sate for insufficient VDR-dependent CAMP expression, 
maintaining adequate CAMP levels during UV-deficient 
winter to combat life-threatening microbial infections, 
such as lupus vulgaris. Therefore, rosacea should not be 
considered as a disadvantage, but as evolution’s blessing 
of the Celts which improved their survival. The concept 
presented here also explains the mechanism of Finsen’s 
UV treatment of lupus vulgaris by UV- and ER stress-
mediated upregulation of CAMP expression. Rosacea 
could therefore be described as the Celts’ “inborn Finsen 
lamp”. Key words: CAMP; C/EBPα; cathelicidin; Celts; 
ER stress; HLA-DRA; LL-37; osteopontin; multiple scle-
rosis; sphingosine-1-phosphate; rosacea; vitamin D. 
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Rosacea is a chronic inflammatory skin disease whose 
pathophysiological mechanism is obscure. Rosacea is 
most frequently seen in a familial setting and appears after 
puberty, when sebaceous glands are fully developed. Most 
individuals affected by rosacea are of northern European 
origin and up to 1/3 report a family history, indicating that 
a genetic factor is involved (1). First reported by Yamasaki 
et al. (2) and later confirmed by other studies, patients 
with rosacea exhibit abnormally high facial skin levels 
of cathelicidin (CAMP) and trypsin-like serine protease 
kallikrein 5 (KLK5), which cleaves the CAMP precursor 
protein into its bioactive fragment LL-37 (3–9). In addition 
to increased CAMP expression and KLK5 activation, Toll-
like receptor-2 (TLR2) is overexpressed in epidermal kera-
tinocytes (10). TLR2 enhances serine protease production 
by keratinocytes, thus increasing the release of bioactive 
CAMP peptides (10). Physiologically, TLR2, a key recep-
tor recognizing pathogen- (PAMPs) and danger-associated 
molecular patterns (DAMPs), is activated as a first line of 
innate immune defence in the presence of gram-positive 
bacteria. Current concepts suggest that clinical trigger fac-
tors for rosacea, such as UV irradiation, heat, cold, stress, 
spicy foods, and microbes, modulate TLR signalling (4). 
To find a potential explanation for increased CAMP and 
TLR2 signalling in rosacea, the transcriptional regulation 
of the CAMP promoter and the potential pathway that in-
duces TLR2 signalling independent of classical microbial 
stimuli activating innate immunity have been evaluated. 

The aim of this review is to present a new unifying 
concept of rosacea pathogenesis focusing on increased 
endoplasmic reticulum (ER) stress responsiveness, which 
is mediated via enhanced sphingosine-1-phosphate (S1P) 
signalling in rosacea skin. The ER stress concept of rosacea 
elucidates aetiopathogenesis, explains the synergistic mo-
lecular action of disease exacerbation factors, and provides 
a new explanation of the mode of action of Finsen’s UV 
treatment of lupus vulgaris. Greater understanding of ER 
stress hyper-responsiveness in rosacea associated with in-
creased S1P signalling may allow the development of new 
treatment strategies to correct S1P-dependent pathways 
in rosacea skin.

CAMP/LL-37 AND HOST DEFENCE 

CAMP is produced by keratinocytes, neutrophil granulocy-
tes, monocytes, mast cells, immune cells, cells of eccrine 
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sweat glands and sebocytes (11–13). At present, it is not 
certain which skin cells are the major source of CAMP/LL-
37 production in rosacea. It is notable that the distribution 
and density of sebocytes in facial skin best matches the 
clinical manifestation of disease. Moreover, Meibomian 
gland dysfunction in ocular rosacea and responsiveness 
to doxycycline treatment indicate a major contribution of 
sebocytes in rosacea pathogenesis (14).

LL-37, the biologically active fragment of CAMP, is 
an amphipathic, α-helical, antimicrobial peptide. The 2 
hydrophobic domains in the long amphipathic α-helix 
of LL-37 lay the basis for binding and disrupting curved 
anionic bacterial membrane surfaces by forming pores 
disturbing the microbe’s lipid bilayer (15, 16). CAMP pro-
vides cutaneous defence against many bacterial pathogens 
including Mycobacterium tuberculosis (17–20), group A 
streptococcus and methicillin-resistant S. aureus (21, 22). 
Furthermore, CAMP is effective against viral infections, 
including Herpes simplex, vaccinia, and fungal infections, 
including Candida albicans (23–25). LL-37 bloodstream 
surveillance is downregulated during septic shock (26). 
Low plasma levels of pro-LL-37 have been reported as an 
early indication of severe disease in patients with chronic 
neutropenia (27). A deficiency of LL-37 has been detected 
in Morbus Kostmann (28), an infantile genetic agranulocy-
tosis. In haemodialysis patients, decreased CAMP plasma 
levels predicted increased infectious disease mortality (29). 
Furthermore, LL-37 is also involved in re-epithelialization 
and wound healing of the skin and the cornea (30, 31). 
Recent evidence indicates that LL-37 plays a role in 
carcinogenesis and suppresses tumourigenesis in gastric 
cancer (32), which may be explained by LL-37-mediated 
defence against Helicobacter pylori (33). 

Taken together, there is substantial evidence for the 
pivotal role of LL-37 expression in appropriate host de-
fence, a highly critical factor for human survival. Vitamin 
D deficiency in patients with pulmonary tuberculosis has 
been found to be associated with low local expression of 

LL-37 (34). Plasma levels of LL-37 have been shown to 
correlate with plasma levels of 25-OH vitamin D (35). 
It has been shown in 1,414 Caucasian women in the UK 
that fair skin type (photo skin type I and II) is associa-
ted with low 25-OH vitamin D levels (71 nmol/l) (36). 
Women with fair skin had even lower 25-OH vitamin D 
levels compared with those with photo skin type III and 
IV (82 nmol/l) (36). Thus, people with fair skin, such as 
the Celtic population living in the Northern hemisphere, 
are at increased risk for deficiencies of vitamin D and 
LL-37, thus enhancing the risk for epithelial infections.

CAMP PROMOTER REGULATION

In keratinocytes the CAMP promoter is activated via a vi-
tamin D-dependent and a vitamin D-independent pathway 
(37). The vitamin D-dependent pathway involves the in-
teraction of vitamin D with vitamin D receptor (VDR), its 
heterodimerization with retinoid X receptor (RXR), and 
subsequent binding to the VDR element (VDRE) on the 
CAMP promoter (38). The second vitamin D-independent 
mechanism features binding of the phosphorylated trans-
cription factor CCAAT/enhancer-binding protein-α (C/
EBPα) to the corresponding C/EBP binding element on 
the CAMP promoter region (Fig. 1) (37). The C/EBPα-
driven activation of CAMP is stimulated by increased ER 
stress, which upregulates sphingosine-1-phosphate (S1P) 
and nuclear factor κB (NFκB) that activate downstream 
p38 MAP kinase, which phosphorylates and thus activates 
C/EBPα (Fig. 1) (37).

VITAMIN D-INDEPENDENT CAMP ACTIVATION 
BY ENDOPLASMIC RETICULUM STRESS

The ER is a key site where extracellular and intracellular 
signals are sensed, integrated, and transmitted, allowing the 
coordinated repair or initiation of defence responses (39). 

Fig. 1. Seasonal CAMP promoter regulation and aberrant CAMP regulation in rosacea. (A) During the summer months sufficient ultraviolet B (UV-B) 
activates the CAMP promoter via vitamin D receptor/retinoid X receptor (VDR/RXR) and UV-triggered endoplasmic reticulum (ER) stress via CCAAT/
enhancer-binding protein-α (C/EBPα). (B) During winter in the Northern hemisphere insufficient vitamin D synthesis impairs the production of bioactive 
cathelicidin antimicrobial peptide (CAMP) LL-37 (LL-37) increasing the risk of infection. (C) A suspected mutation in the Celtic population upregulating 
ER stress and downstream C/EBPα signalling provided an evolutionary alternative for compensated CAMP expression and LL-37 production, thus 
improving host defence and survival. VDR: vitamin D receptor; VDRE: vitamin D receptor response element; RXR: retinoid X receptor; CAMP: 
cathelicidin antimicrobial peptide; KLK5: kallikrein 5; ATF4: activating transcription factor 4; TLR2: toll-like receptor 2; NFκB: nuclear factor κB; 
S1P: sphingosine-1-phosphate.
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I have recently proposed that patients with rosacea may 
exhibit increased ER stress signalling, representing a key 
factor in rosacea pathogenesis (40). Thus, all trigger factors 
for clinical rosacea increase the skin’s ER stress response, 
also known as the unfolded protein response (UPR). Upre-
gulated ER stress results in enhanced activation of C/EBPα, 
increasing CAMP expression (37). Notably, C/EBPα is a do-
minant transcription factor in sebocyte activation, sebaceous 
lipogenesis and sebocyte-derived CAMP production (13, 
41). ER stress can directly promote NFκB activation, which 
enhances proinflammatory cytokine expression including 
CAMP (41–43). Notably, enhanced ER stress signalling 
is associated with upregulation of activating transcription 
factor 4 (ATF4) (39). ATF4 promotes TLR2 expression 
in epithelial cells during ER stress (44). TLR2, which is 
upregulated in rosacea (10), promotes C/EBPα-mediated 
expression of CAMP and KLK5, increasing the availability 
of LL-37 (10, 37). Moreover, ER stress upregulates the key 
lipid mediator of inflammation: sphingosine-1-phosphate 
(S1P) (Fig. 2).

SPHINGOSINE-1-PHOSPHATE

ER stress increases the production of the lipid mediator 
S1P in the ER by activation of sphingosine kinase 2 (SK2) 
(45). Intriguingly, comparable to ATF4-mediated upregu-
lation of TLR2 during ER stress, SK2 expression is also 
induced by ATF4 (45). SK2 activity is involved in the for-
mation of cis-4-methylsphingosine phosphate (46), which 
results in the activation of p38 mitogen-activated protein 
kinase (p38 MAPK) (47). p38 MAPK finally phosphoryla-
tes and thus activates the transcription factor C/EBPα (Fig. 
1). Park et al. (48, 49) provided experimental evidence that 
S1P mediates ER stress-induced CAMP generation via 
induction of C/EBPα. Cellular ceramide and S1P levels 
rise in parallel with CAMP levels following addition of 

either exogenous cell-permeating ceramide (C2Cer), which 
increases S1P production, or the experimental ER stressor 
thapsigargin, applied to cultured human skin keratinocytes 
and mouse skin. Knockdown of S1P lyase, which cataboli-
zes and degrades S1P, enhanced ER stress-induced CAMP 
production in cultured cells and mouse skin (48, 49) (Fig. 
2). These studies showed that S1P is responsible for ER 
stress-induced vitamin D-independent upregulation of 
CAMP expression (48, 49). Increased CAMP expression 
is mediated via S1P-dependent NFκB-C/EBPα activation. 
S1P generation resulting in increased CAMP production 
thus comprises a novel regulatory mechanism of epithelial 
innate immune responses (48, 49).

INFLAMMATION

The proinflammatory peptide LL-37 can work in synergy 
with the endogenous inflammatory mediator IL-1β to 
enhance the induction of specific inflammatory effec-
tors (50). TLR2, which is upregulated in keratinocytes 
of patients with rosacea (10), is the first signal that 
activates the NLRP3 inflammasome demonstrated in 
several inflammatory cells (51, 52). Notably, the TLR2/
MyD88/NFκB pathway upregulates C/EBPα, the critical 
transcription factor activating CAMP (37). Thus, ER 
stress via ATF4-mediated TLR2-upregulation is directly 
connected to NLRP3 inflammasome activation, which 
induces interleukin-1β (IL-1β) signalling (51, 52) (Fig. 
2). IL-1β subsequently stimulates Th17 cell activa-
tion and IL-17-dependent inflammation (53). In fact, 
cutaneous skin biopsies of ocular rosacea confirmed 
increased IL-1β levels compared with normal skin (54). 
Importantly, LL-37 activates caspase-1, the key enzyme 
of the inflammasome, resulting in the release of active 
IL-1β and IL-18 (55). It should be noticed that TLRs not 
only recognize external pathogen-associated molecular 

Fig. 2. Endoplasmic reticulum (ER) stress-centred working 
model of rosacea pathogenesis. Upregulated ER stress by an 
unknown mutation (sarcoplasmic reticulum Ca(2+)-ATPase 2 
(SERCA2), sphingosine-1-phosphate (S1P) lyase?) via activating 
transcription factor 4 (ATF4) and S1P activates p38 mitogen-
activated protein kinase (p38 MAPK) that phosphorylates and 
activates CCAAT/enhancer-binding protein-α (C/EBPα). C/
EBPα increases the expression of CAMP and osteopontin (OSN) 
stimulating inflammation, angiogenesis, fibrosis and granuloma 
formation. S1P via transient receptor potential ion channels of the 
vanilloid type 1 (TRPV1)-mediated sensitization of peripheral 
nerves induces skin hypersensitivity. S1P via sphingosine-1-
phosphate receptor (S1PR) signalling causes vasodilation and 
flushing. ATF4 via activation of vascular endothelial growth 
factor A (VEGFA) induces angiogenesis and lymphangiogenesis. 
Toll-like receptor 2 (TLR2) increases the activity of kallikrein 
5 (KLK5) enhancing the proteolytic cleavage of CAMP. 
Upregulation of TLR2 on peripheral neurones increases the 
susceptibility for pain. Bioactive peptide of CAMP (LL-37) 
activates caspase-1, the key enzyme of the NLRP3 inflammasome 
producing interleukin-1β (IL-1β), which activates Th17 cells. 
SK2: sphingosine kinase 2; NFκB: nuclear factor κB; SPP1: 
OSN gene; SG: sebaceous gland.
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pattern (PAMPS), such as Demodex mite compounds, 
but also internal danger-associated molecular pattern 
(DAMPS) either as single entities or after complex 
formation such as DNA/LL-37 complexes (56). Thus, 
upregulated LL-37 complexed to DNA functions as 
DAMPs stimulating TLR4 signalling (56). Both dectin-1 
and TLR2 were required for Mycobacterium abcessus-
induced mRNA expression of pro-IL-1β, CAMP/LL-37 
and β-defensin 4 (57).

There is recent evidence that LL-37 functions as an 
alarmin through IL-36γ induction in human epidermal 
keratinocytes (58). LL-37 induces chemokines, including 
CXCL1, CXCL8/IL-8, CXCL10/IP-10 and CCL20/MIP3a 
(58). IL-17A has been shown to enhance CAMP mRNA 
and peptide expression in keratinocytes dependent on the 
presence of vitamin D3 (59). LL-37 and Th17-cell derived 
cytokines (IL-17 and IL-22) synergistically upregulate the 
expression of CXCL8 and IL-6 (60). 

Mast cells have recently been implicated as key medi-
ators of CAMP-induced skin inflammation in rosacea (61), 
providing a potential link to the pathogenesis of Morbus 
Morbihan (62). CAMP exhibits multifunctional activities 
in mast cell activation (63). Intriguingly, S1P produced in 
allergen-stimulated mast cells, mediates degranulation, 
cytokine and lipid mediator production and migration of 
mast cells towards antigen through mechanisms that are 
both S1P receptor-dependent and independent. Even in the 
absence of an antigen challenge, the differentiation and 
responsiveness of mast cells can be affected by chronic 
exposure to elevated S1P from a non-mast cell source (64, 
65). This may explain mast cell hyper-responsiveness in 
rosacea. It has recently been shown that TLR2/1 signal-
ling and S1P cooperate in pro-inflammatory cytokine 
production and myofibroblast differentiation and promote 
cell migration of skin fibroblasts in an S1P-concentration 
dependent manner (66). Thus, S1P may link ER stress-
mediated inflammation with mast cell activation and fibro-
tic changes in rosacea, as discussed below in more detail.

Taken together, upregulated ER stress with increased 
ATF4/TLR2/S1P/C/EBPα-driven activation of CAMP ex-
plains LL-37-mediated NLRP3 inflammasome activation 
and inflammatory Th17 cell activation with subsequent 
inflammatory cell infiltration in rosacea skin.

SKIN HYPERSENSITIVITY 

TLRs are not only expressed on inflammatory cells, 
but also on peripheral nerve cells, where they play an 
important role in the modulation of neuronal plasticity 
and neuronal responses under inflammatory conditions 
such as the upregulation of pain during inflamma-
tory insults (67). TLR2 expression in primary sensory 
neurones is involved in the sensation of pain and itch 
(68–70). Thus, enhanced ER stress signalling in rosacea 
may increase ATF4-mediated upregulation of TLR2 on 
sensory peripheral nerves, thus explaining cutaneous 

hypersensitivity, reduced pain threshold, and stinging 
of facial skin in patients with rosacea (71, 72). 

Intriguingly, S1P plays a key role in the regulation of 
epidermal homeostasis, innate immunity, wound healing 
and ER stress (48, 73). Remarkably, S1P evokes signifi-
cant nociception via G-protein-dependent activation of 
an excitatory Cl– conductance that is largely mediated 
by S1P3 receptors present in nociceptors (74). S1P, by 
upregulating the excitability of sensory neurones, may 
thus induce skin hypersensitivity during inflammation 
(75). Taken together, there is accumulating translational 
evidence linking skin hypersensitivity with enhanced ER 
stress-induced TLR2- and S1P-signalling.

HEAT

Rosacea skin is very sensitive to temperature changes, 
especially to heat (76). Heat stress is a classical form 
of ER stress induced by the generation of heat shock 
proteins. Heat shock upregulates ER stress signalling 
via expression of heat shock protein 70 (HSP70) as 
well as TLR2 and TLR4 associated with the activation 
of p38 MAP kinase (77), which phosphorylates and 
thereby activates C/EBPα. Both S1P and agonists at 
the S1P1 receptor induced hypersensitivity to noxious 
thermal stimuli in vitro and in vivo (78). S1P-induced 
hypersensitivity was strongly attenuated in mice lacking 
transient receptor potential ion channels of the vanilloid 
type 1 (TRPV1) (78). S1P and inflammation-induced 
hypersensitivity was significantly reduced in mice with 
a conditional nociceptor-specific deletion of the S1P1 re-
ceptor. Intriguingly, Sulk et al. (79) recently demonstra-
ted that TRVP1 expression is significantly increased in 
erythematotelangiectatic rosacea. S1P acts on G-protein 
coupled receptors that are expressed in sensory neurones 
that sensitize TRPV1 channels towards thermal stimuli 
(80). Thus, increased heat sensitivity in rosacea skin 
may be derived from over-activated ER stress-driven 
S1P/TRVP1 signalling.

ULTRAVIOLET RADIATION 

UV-B irradiation triggers disease flares that are characte-
rized by inflammation and vascular hyperactivity. LL-37 
has been shown to increase UV-B-mediated inflammasome 
activation (81). This may modulate the proinflammatory 
and pro-angiogenic effects of UV irradiation enhancing 
sensitivity to sun exposure in rosacea (81).

Importantly, UV irradiation is known to induce ER 
stress in human epidermis. UV-A and UV-B exposure of 
epidermis increased C/EBP-homologous protein (CHOP), 
a transcription factor produced by the eukaryotic translation 
initiation factor 2α kinase 3 (EIF2AK3) (82). Activation 
of ER signalling is thought to protect keratinocytes from 
environmental UV-B stress (83). Indeed, UV-B upregulates 
heat shock 70-kDa protein 5 (HSPA5), an ER stress marker 
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in HaCaT keratinocytes (84), activates NFκB by stimulation 
of the EIF2AK3-eIF2α pathway (85), which is associated 
with increased expression of antimicrobial peptides (86). 
Notably, UV-A irradiation of dermal fibroblasts also activa-
tes the ER stress response (87). 

UV-B irradiation triggers the conversion of ceramide to 
S1P, a mechanism that protects against ceramide-induced 
apoptosis in keratinocytes exposed to UV-B (88). Thus, 
substantial evidence confirms that UV-B irradiation 
initiates ER stress, which enhances S1P formation that 
promotes C/EBPα-dependent gene expression such as 
CAMP.

Taken together, UV-irradiation via vitamin D-depen-
dent (VDR/RXR) as well as UV-triggered ER stress 
promote CAMP transcriptional activation (Fig. 1A). This 
explains why UV is such a strong clinical trigger factor 
in rosacea, activating both CAMP promoters.

RED WINE AND SPICY FOODS

Rosacea is exacerbated by dietary factors, such as in-
creased consumption of red wine and spicy foods, e.g. 
chilli (4, 76), indicating that nutrients can act as modu-
lators of the ER stress response (89). In fact, resveratrol, 
a natural phenol found in red wine, and genistein, a 
natural isoflavonoid, and phytoestrogen, respectively, 
stimulated CAMP expression via S1P-mediated activa-
tion of C/EBPα (90, 91). Capsaicin (8-methyl-N-vanil-
lyl-6-nonenamide), an active component of chilli, is a 
common ingredient of spicy foods. Capsaicin induced 
peak inward current (ICAPS) of sensory neurones. S1P 
sensitized ICAPS through G-protein coupled S1P1 re-
ceptor activation of the Gαi-PI3K-PKC-p38 signalling 
pathway in sensory neurones. Thus, S1P and capsaicin 
upregulate neuronal inflammation, a potential explana-
tion for rosacea flares after consumption of red wine and 
spicy foods (80).

OESTROGENS 

Oestrogens have been suggested to aggravate rosacea 
(92, 93). However, differences in oestrogen receptor 
expression have not been observed in rosacea skin 
(93). Remarkably, oestrogen receptor β is involved in 
genistein-induced upregulation of S1P-C/EBPα-CAMP 
transcriptional activation (91). Oestrogen-mediated 
upregulation of CAMP expression may be a physiologi-
cal mechanism enhancing oestrogen-dependent epithelial 
defences (94).

FLUSHING 

Facial erythema and vasodilation are most prevalent in 
rosacea and have recently been treated with a selective 
α-adrenergic receptor antagonist brimonidine (95, 96). 

ER stress-mediated production of S1P not only induces 
production of CAMP (69) but also controls the vascular 
tone (97, 98). S1P has been found to exert a diverse set 
of physiological and pathophysiological responses in 
mammalian tissues through the activation of heterotri-
meric G-proteins that, in turn, modulate the activity of 
various downstream effector molecules. In blood ves-
sels, vascular endothelial cells and smooth muscle cells 
express specific receptors for S1P that modulate vascular 
tone (97, 98). Depending on the expression of distinct 
receptor subtypes (S1P2 and/or S1P3) S1P may differen-
tially evoke vasorelaxation or vasoconstriction (97, 98).

ANGIOGENESIS

Erythema and telangiectasia are morphological hallmarks 
of rosacea (99). Angiogenesis has been implicated to 
play a major role in rosacea pathogenesis (100). In fact, 
upregulated LL-37 production has been reported to 
promote angiogenesis (101). It is notable that ER stress 
with upregulation of ATF4 activates vascular endothelial 
growth factor A (VEGFA), which promotes angiogenesis 
and lymphangiogenesis (102–106) (Fig. 2). ATF4 co-
expression together with protease-activated receptor 2 
(PAR-2) has been shown in microglial cells (107). It has 
been shown recently that PAR-2 may participate in the 
pathogenesis of rosacea through activation of CAMP 
(108). After treatment of PAR-2 with activating protein, 
both mRNA and protein levels for PAR-2, CAMP and 
VEGF significantly increased in cultured keratinocytes 
(108). Thus, upregulated ER stress via ATF4 signalling 
provides a suitable explanation for the development of 
telangiectasia and lymphoedema in rosacea.

SEBACEOUS GLAND DYSFUNCTION

Most textbooks of dermatology classify rosacea as a 
disease of the sebaceous follicle (109). Sebaceous gland 
dysfunction and Meibomian gland abnormalities have 
been discussed to play an important role in facial and 
ocular rosacea (110, 111). Transcription factor C/EBPα 
is involved in differentiation of sebocytes and Meibo-
mian glands (41, 112). Tóth et al. (113) demonstrated 
that TRPV1 signalling acts as a regulator of human se-
bocyte biology. Notably, low-dose capsaicin stimulated 
sebocyte proliferation via TRPV1 (113).

Rosacea skin exhibits increased irritability towards 
lactic acid and certain surfactants (71, 72). These may 
function as ER stressors of both keratinocytes and sebocy-
tes. Daily applications of anionic and cationic surfactants, 
solvents and emulsifiers to the flanks of hairless albino 
female mice for several days led to a rapid increase in se-
bocyte counts. Irritating substances, such as croton oil and 
benzalkonium chloride, had the greatest hyperplasiogenic 
effect, doubled sebocyte counts associated with a large 
increase in rough ER (114). An enlargement of sebaceous 
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glands was also reported after ultraviolet radiation (115). 
These ultrastructural changes of sebocyte ER most likely 
represent the morphological equivalent of enhanced se-
bocyte ER stress. ER stress mediated upregulation of S1P 
and C/EBPα may thus enhance sebocyte ER expansion and 
CAMP expression, supporting the pivotal role of sebocytes 
in cutaneous host defence (116).

FIBROSIS AND RHINOPHYMA FORMATION 

S1P is an important cutaneous regulator of fibrosis (117). 
Extracellular S1P promotes fibrotic processes in a S1P 
receptor-dependent manner and plays a key role in the 
multistep cascade of pathological fibrogenesis, including 
tissue injury, inflammation and the action of pro-fibrotic 
cytokines that stimulate extracellular matrix production 
and deposition (117). Moreover, a close interaction be
tween TLRs and S1P has been observed in human dermal 
fibroblasts in the context of inflammation, fibrosis and 
cell migration (66). 

ER stress signalling enhances the production and secre-
tion of osteopontin (OPN), also known as SPP-1 (secreted 
phosphoprotein 1) or Eta-1 (early T lymphocyte activation 
1). OPN is a multifunctional secreted glycoprotein that 
plays important roles in cell growth, differentiation, migra-
tion and tissue fibrosis. The ER stress-inducing reagents 
tunicamycin and thapsigargin-induced the expression and 
production of OPN (118). Conversely, OPN increased ER 
stress, as evidenced by increased expression of Gadd153 
and activation of caspase-12 (119). 

Phymas develop in a subgroup of patients with rosacea, 
predominantly in elderly overweight males (120). Thus, 
the question arose as to whether exaggerated ER stress 
promotes phyma formation. ATF4, one of the upregulated 
transcription factors during ER stress, binds to the pro-
moter of COL1A and thus increases collagen synthesis 
(121, 122). It is notable that ER stress-mediated fibrosis 
is a common pathogenic feature in other chronic ER 
stress diseases, such as renal and liver fibrosis (123–125). 

OPN plays a crucial role in cutaneous fibroblast activa-
tion (126, 127). Remarkably, OPN and CAMP are both 
expressed in a C/EBPα-dependent manner in sebaceous 
glands (128). It is thus possible that ER stress-activated 
sebocytes, which are found at their highest density in fa-
cial skin, promote CAMP- and OPN-driven pathological 
alterations of rosacea.

Notably, the observed anti-fibrotic effect of the synt-
hetic anti-oestrogen tamoxifen (129) may be explained 
by downregulation of oestrogen-S1P-C/EBPα-mediated 
OPN expression. 

OSTEOPONTIN AND GRANULOMA FORMATION

Importantly, strong histiocyte-derived expression of OPN 
has been observed in skin granulomas of diverse aetiology 

(130). Secreted OPN interacts with integrins and CD44, 
influences inflammation and granuloma formation (131). 
In analogy to CAMP, OPN supports immune responses 
against mycobacteria and viruses, such as herpes simp-
lex virus (131, 132). Strong expression of OPN mRNA 
and protein was seen in the epithelioid histiocytes and 
multinucleate histiocytic giant cells in granulomas by in 
situ hybridization and immunostaining (130). In contrast, 
OPN-gene-deficient mice exhibited severely impaired 
type-1 immunity to herpes simplex virus-type 1 and Lis-
teria monocytogenes and did not develop sarcoid-type 
granulomas (133). There is evidence that C/EBPα binds 
to the promoter of the OPN gene SPP1 (134) (Fig. 2). 
In analogy to the CAMP promoter, the SPP1 promoter 
is regulated by VDR/RXR and C/EBPα (135). Thus, ER 
stress via S1P-C/EBPα-mediated upregulation of OPN 
may promote granuloma formation, a common histolo-
gical feature of rosacea.

ANTI-ROSACEA DRUGS 

The recently proposed pathogenic concept of “ER 
stress-driven rosacea” (40) allows the prediction that 
all anti-rosacea drugs attenuate the magnitude of ATF4-
TLR2-S1P/p38/EBPα-CAMP-KLK5-LL-37 signalling 
at some point in the signalling cascade (Fig. 2).

Isotretinoin 

Systemic isotretinoin is effective in rosacea treatment 
(136, 137). Notably, isotretinoin (13-cis-retinoic acid) 
after isomerization to all-trans-retinoic acid downregu-
lates TLR2 expression (138–140). Isotretinoin-mediated 
involution of sebaceous glands may thus attenuate ER 
stress-mediated TLR2 signalling in sebocytes associated 
with a reduction in sebocyte-derived CAMP and OPN 
expression (141). Moreover, isotretinoin-mediated 
downregulation of sebocyte-derived CAMP explains 
the increased susceptibility to S. aureus infection during 
systemic isotretinoin treatment (142).

Tetracyclines

Oral tetracyclines are effective in the treatment of facial 
and ocular rosacea (143, 144). Minocycline and isotre-
tinoin reduce TLR2 expression and signalling (145, 
146). Doxycycline has been shown to inhibit proteoly-
tic activation of KLK-related peptidases important for 
CAMP cleavage (147). Moreover, tetracyclines inhibit 
the generation of reactive oxygen species (ROS) (148), 
which are integral effectors of the ER stress response 
(149, 150).

Metronidazole

Topical metronidazole is an effective drug for rosacea 
therapy (151). Metronidazole decreases ROS production 
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accompanying ER stress responses (149, 150) through 
modulation of neutrophil activity and by ROS scaveng-
ing (152). Furthermore, metronidazole may directly 
inhibit KLK5, as has recently been demonstrated for 
other triazole derivatives (153, 154). 

Azelaic acid

Azelaic acid exerts therapeutic effects in papulopustu-
lar rosacea comparable to metronidazole (155, 156). 
Azelaic acid directly inhibits KLK5 in cultured kera-
tinocytes and reduces the expression of TLR2, KLK5, 
and CAMP in mouse skin (157). In addition, azelaic 
acid mitigates ROS formation (152, 158).

Ivermectin

A recent randomized, investigator blinded trial demon-
strated the effectiveness of ivermectin 1% cream in 
papulopustular rosacea (159). It has been demonstrated 
that avermectin and ivermectin (22,23-dihydroaver-
mectin B1a + 22,23-dihydroavermectin B1b) inhibit 
the phosphorylation of p38 MAPK in LPS-stimulated 
RAW 264.7 mouse macrophages (160, 161). Notably, 
p38 phosphorylation plays a crucial role for the activa-
tion of ER stress signalling.

Taken together, all known drugs, which have been em-
pirically introduced into rosacea therapy, downscale the 
TLR2-S1P-p38 MAPK-C/EBPα-CAMP-KLK5-LL-37 
signalling at various points of the ER stress signalling 
cascade (Fig. 2).

ENDOPLASMIC RETICULUM STRESS: THE LINK 
BETWEEN ROSACEA AND MULTIPLE SCLEROSIS?

The HLA-DRB1*15 allele, is the main genetic risk factor 
for multiple sclerosis (MS) in Caucasians. HLA-DRB1 
codes for a major histocompatibility complex class II 
cell surface receptor. Recent findings showed that the 
transcription of this molecule is regulated by VDR. The 
rs731236 TT VDR genotype modulates VDR expression 
and confers protection against MS in HLA-DRB1*15-
positive individuals (162). Intriguingly, recent evidence 
derived from phenome-wide association studies demon-
strated that the HLA-DRB1 variant, associated with MS, 
is also related with rosacea (163, 164). 

It has been recognized that ER dysfunction plays a 
crucial pathogenic role in neurological diseases including 
MS (165). The detection of elevated levels of ER stress 
molecules in lesional tissue of patients with MS led to 
the conclusion that ER stress plays a pivotal role in the 
pathogenesis of MS (166, 167). ER chaperones, which 
perform a multitude of repair functions within the ER, can 
translocate to the cytosol and eventually the surface of 
cells, where they can take on immunogenic characteristics 
critically involved in MS autoimmunity (168). Thus the 
ER stress signalling pathway has been considered as a 

potential therapeutic target for the treatment of MS (167). 
In fact, S1P receptor blockade has been implemented in 
the treatment of MS (169–172). Fingolimod phosphate, 
a S1P receptor modulator, binds with high affinity to 4 
of the 5 known S1P receptors (S1P1, S1P3, S1P4 and 
S1P5) (168, 170). Siponimod (BAF312), a next genera-
tion selective S1P1- and S1P5 receptor modulator, has 
been introduced in the treatment of progressive MS (171).

Attenuation of S1P signalling exhibits beneficial ef-
fects in patients with MS and apparently down-regulates 
S1P-driven ER signalling in brain tissue. It is notable that 
S1P signalling has been determined as a key regulator 
of blood-brain barrier permeability (172). Remarkably, 
venous blood flow from the skin to the brain is suppres-
sed in patients with rosacea, associated with a disturbed 
defence against brain overheating (173). Heat, which is 
a known rosacea ER stressor, may induce ER stress in 
brain tissue, promoting the progression of MS. Thus, 
there appear to be genetic and ER stress-dependent pat-
hophysiological interactions between rosacea and MS. 
Rosacea may thus be regarded as a preclinical indicator 
of an increased risk for MS.

ENDOPLASMIC RETICULUM STRESS INDUCUED 
BY HLA-DRA POLYMORPHISM?

A recent genome wide association study confirmed the as-
sociation of rosacea with SNP rs763035, which is interge-
nic between HLA-DRA and BTNL2 (174). The HLA-DRA 
association is consistent with inflammatory nature of the 
disease (174). HLA allele associations are linked to autoim-
mune and inflammatory intestinal diseases (174) such as 
Crohn’s disease and ulcerative colitis, which have been 
linked to enhanced ER stress (175). Human cytomegalo-
virus (HCMV) glycoprotein US2 binds to HLA-DRA that 
facilitates ER-mediated proteasomal degradation (176). 
Intruigingly, in AIDS enteropathy and other lentivirus 
infections activated ER stress pathways with significant 
upregulation of the ER stress transcription factor XBP-1 
and induction of HLA-DRA have been reported (177). 
Notably, gene silencing of XBP-1 decreased MHC class 
II expression (178). A genetic variant of HLA-DRA with 
dimished functional ER clearance capacity might enhance 
ER stress signalling and may thus be a potential gene 
candidate for rosacea.

CONCLUSION

Translational evidence presented here sheds new light 
on the pathogenesis of ER stress-driven rosacea. This 
unifying concept explains the molecular pathology of 
rosacea (Table I), the disease-promoting activity of clini-
cal rosacea triggers, and the corresponding counteraction 
of anti-rosacea drugs. Upregulated ER stress in rosacea 
apparently evolved under the evolutionary pressure of hu-
mans exposed to environmental conditions with insuffi-
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cient vitamin D-dependent CAMP activation. Insufficient 
vitamin D-dependent CAMP regulation was apparently 
compensated by intrinsic activation of the alternative C/
EBPα-regulated CAMP promoter, a transcription factor 
upregulated via enhanced ER stress signalling. 

Studies that have determined the relative contribu-
tion and quantification of the cellular sources generating 
CAMP/LL-37 and S1P in rosacea skin are still missing. 
Most studies have focused on keratinocytes (2, 3). Among 
keratinocytes and mast cells, the sebocytes of the facial 
skin, including the Meibomian gland cells, may play a 
more important role in the initiation of ER stress, with 
increased CAMP and OPN expression. Notably, in most 
cases rosacea begins after puberty, the time period fea-
turing fully developed sebaceous glands, which, via C/
EBPα, produce excessive amounts of CAMP (41, 112, 
116). However, at present, the major CAMP-producing 
cell in rosacea skin and the underlying genetic defect that 
increases ER stress signalling is unknown. The HLA-
DRB1*15 allele and HLA-DRA polymorphism may be 
promising genetic connections to start off.

Interestingly, the acute irritant threshold in facial rosacea 
skin correlates with barrier function (179). Skin barrier 
perturbation has been associated with keratinocyte calcium 
(Ca2+) depletion activating the ER stress response (180). 
ER Ca2+ homeostasis is regulated by a Ca2+ ATPase that 

is mutated in Darier disease (181–183). The mutated gene 
ATP2A2 encodes the sarco/ER Ca(2+)-ATPase isoform 2 
(SERCA2) (184). It is noteworthy that Darier keratinocytes 
display constitutively upregulated ER stress (184, 185). 
Thus, there is a link between epidermal barrier homoeosta-
sis and keratinocyte ER stress signalling, which may also 
play a role in rosacea pathogenesis. It is also noteworthy 
that mature sebocytes express SERCA2 (186), whereas 
ageing disturbs the appropriate function and expression 
SERCA2 (187), which may explain disease progression 
with advanced age. Sebocyte SERCA2 thus appears to be a 
promising candidate for future genetic research elucidating 
the decreased ER stress threshold in rosacea. 

The concept presented here opens possible new av-
enues for rosacea treatment. S1P receptor antagonism 
may be a very promising future approach in balancing 
ER stress-mediated S1P signalling in rosacea. Recent 
evidence points to the therapeutic potential of lysop-
hospholipid receptor modification in the control of neu-
roinflammatory diseases, such as MS, which may share a 
common ER stress-driven pathomechanism with rosacea 
(188, 189). Intriguingly, pharmacological inhibition of 
the S1P-degrading enzyme S1P lyase in mice-induced 
skin irritation (190). It should be remembered that ER 
stress in keratinocytes was induced by application of 
the ER stressor and SERCA inhibitor thapsigargin (48, 

Table I. Rosacea pathologies explained as endoplasmic reticulum (ER) stress-driven transcriptional regulations

Clinical pathologies Potential transcriptional explanation References

Upregulated epidermal CAMP 
expression

Enhanced C/EBPα-mediated CAMP activation via increased ER stress signalling induced by ATF4-
mediated expression of SK2 activating p38 MAPK 

37, 40, 45–47

Upregulated TLR2 expression ATF4-mediated upregulation of TLR2 44
Inflammation over sebaceous gland-
enriched areas of facial skin 

NLRP3 activation by LL-37 via caspase-1 activation 
LL-37-mediated induction of IL-36γ , LL-37/DNA-mediated TLR activation
Upregulation of CXCL8 and IL-6 by LL-37, IL-17 and IL-22
Inflammatory cytokine production by TLR2 and S1P 
CAMP-mediated mast cell activation 

55, 56, 58
60, 61, 63, 66

Sebaceous gland dysfunction Increased C/EBPα-mediated CAMP and OPN expression of sebocytes
S1P-mediated sensitization of sebocyte TRPV1?
Irritant-/UV-induced sebocyte ER stress/ER expansion

13, 41, 78, 80, 
111, 112–115, 
128

Flushing 
telangiectases

S1P-mediated changes of vascular tone
LL-37-induced angiogenesis, ATF4/VEGFA-mediated angiogenesis, C/EBPα/OPN-mediated 
angiogenesis, PAR2-mediated upregulation of VEGF

97–108

Lymphoedema Increased ATF4/VEGFA-mediated lymphangiogenesis 102–106
Fibrosis, phyma
and granuloma 

S1P-mediated cutaneous fibrosis
ATF4-mediated transcriptional activation of COL1A1, C/EBPα/OPN-mediated fibrosis and 
granuloma formation

66, 117
121, 122, 128, 
131, 134

Heat Heat shock-mediated ER stress increasing C/EBPα 
S1P-mediated sensitization of TRPV1 channels of neuronal cells towards thermal stimuli

77–80

Skin hypersensitivity, stinging S1P-stimulated nociceptors via S1P3 receptor activation; S1P-mediated upregulation of neuronal 
sensitivity; 
Increased neuronal perception of pain by ATF4-mediated upregulation of TLR2 on sensitive neurones

68–70, 74, 75

UV sensitivity UV-B-mediated ER stress with S1P release; 
VDR/RXR-mediated and ER-stress/C/EBPα-mediated upregulation of CAMP expression; 
UV-B/LL-37-mediated inflammasome activation

81–88

Red wine and spicy foods Resveratrol- and capsaicin-mediated activation of S1P with C/EBPα-driven CAMP expression 80, 90, 91
Oestrogens Oestrogen-induced upregulation of S1P with C/EBPα-promoted CAMP expression 91

UV: ultraviolet; VDR: vitamin D receptor; RXR: retinoid X receptor; CAMP: cathelicidin antimicrobial peptide; ATF4: activating transcription factor 4; TLR2: 
toll-like receptor 2; S1P: sphingosine-1-phosphate; SK2: sphingosine kinase 2; p38 MAPK: p38 mitogen-activated protein kinase; C/EBPα: CCAAT/enhancer-
binding protein-α; IL: interleukin; VEGFA: vascular endothelial growth factor A; PAR2: protease-activated receptor 2;  OPN: osteopontin; TRPV1:transient 
receptor potential ion channels of the vanilloid type 1; ER: endoplasmic reticulum.
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49). Enhanced Ca2+ storage induced by thapsigargin was 
augmented in S1P lyase-deficient fibroblasts (191). The 
functional ability of intracellular S1P in mobilizing Ca2+ 
from thapsigargin-sensitive stores points to an intimate 
regulatory cross-talk between ER stress-S1P-signalling 
and ER Ca2+ homeostasis. Endogenous S1P functions as 
a positive modulator of Ca2+ uptake via store-operated 
channels increasing cell permeability upon a variety of 
agonist-induced conditions, such as histamine (192). 

Whatever the precise molecular defect is in rosacea, 
vitamin D-independent upregulation of CAMP and OPN 
signalling may have served as a crucial survival factor 
in the Celts, thereby corroborating in defeating serious 
bacterial infections such as lupus vulgaris. Rosacea 
can therefore be regarded not the “curse of the Celts” 
but as the “blessing of the Celts”, through improving 
appropriate antimicrobial defences, especially during 
UV-deficient periods. 

Recent PCR evidence links Lewandowsky’s rosacei-
form eruption to mycobacterial infection (193). This 
entity apparently represents a tuberculoid form of lu-
pus vulgaris immunologically controlled by enhanced 
CAMP/OPN-mediated killing of mycobacteria by in-
dividuals without knowing the underlying mode of the 
anti-mycobacterial activity, Nobel laureate Niels Ryberg 
Finsen (194) by applying UV-B irradiation apparently 
cured his Nordic lupus vulgaris patients by upregulating 
the CAMP and SSP1 promoter by UV-B irradiation, thus 
ensuring sufficient vitamin D (VDR/RXR) and ER stress 
(C/EBPα)-mediated promoter stimulation. In fact, ER 
stress is upregulated in macrophages infected with My-
cobacterium tuberculosis and is induced in macrophages 
of tuberculosis granulomas (195, 196). In this regard, 
ER stress hyper-responsiveness of rosacea features the 
antimicrobial action of Finsen’s lamp.

Future rosacea research should focus on cell regulators 
that control ER homeostasis of sebocytes, Meibomian 
gland cells, keratinocytes and mast cells. Furthermore, it 
should be clarified whether facial skin is the only affected 
epithelium featuring upregulated CAMP expression in 
patients with rosacea. As CAMP is expressed by cervical 
epithelia (197) and may affect appropriate neonatal gut 
colonization (198, 199), rosacea may be more than a 
facial skin disease, which may have implications for re-
production and postnatal development, providing further 
potential survival factors for the Celts and their offspring. 
However, increased ER stress signalling, improving host 
defence, may also have adverse long-term effects, such as 
the potential promotion of ER stress-driven MS.
The author declares no conflicts of interest. 
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