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Epidermal keratinocytes are heterogeneous and can be

divided into stem cells (strong b1-integrin expression)

with unlimited clonogenic potential, transient amplifying

cells (weaker b1-integrin expression) with restricted

proliferative capacity and terminally differentiated cells

(no b1-integrin expression) that have lost the capacity

to divide. We tested the hypothesis that cell kinetic

characteristics of the epidermal subpopulations differ.

Single cell suspensions from small human skin punch

biopsies were sorted flow cytometrically into a b1-integrin

weakly positive (dim) and strongly positive (bright)

subpopulation and the clonogenic potential was compared

in cell culture experiments. Image analysis was used to

determine growth characteristics of the colonies. We

found that cell size in the b1-integrin bright subpopulation

increased when colonies aged, whereas this was constant

in the dim subpopulation. The total number of colonies

formed and the growth rate of the colonies were higher in

the b1-integrin dim cells than in the bright subpopulation.

Experimental data from this study confirm the hypothesis

that cell kinetic characteristics of b1-integrin dim and

bright cells are different. Combining flow cytometric

sorting, cell culture and image analysis provides powerful

means for phenotypical and functional characterization of

epidermal subpopulations. Key words: stem cells; kera-
tinocytes; flow cytometry; cell culture; image analysis.
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The epidermis forms the outer part of skin and is

thought to contain putative epidermal stem cells (ESC).

These cells are located in the basal layer, which is

adjacent to the dermis. b1-Integrin, a cell surface glyco-

protein, can be used to distinguish basal (strong

b1-integrin expression) keratinocytes from suprabasal

cells (weak or no b1-integrin expression) (1). b1-Integrin

is known to play a role in keratinocyte differentiation

and tissue assembly (2). The putative ESC form a

subpopulation of cells that strongly express b1-integrin

(b1-integrin bright cells) (3 – 5) and have a high level of

adhesiveness to extracellular matrix ligands. The ESC

have an estimated cell cycle time of 100 – 300 h (6).

They divide asymmetrically into a new ESC and a cell

committed to progressive differentiation, which is called

a transient amplifying cell (TAC). TAC only weakly

express b1-integrin (b1-integrin dim cells) (3, 7). On

account of their limited proliferative potential (4,

8 – 11), it is considered that they can undergo maxi-

mally five rounds of cell division and have a shorter cell

cycle time (35 – 40 h) (12). The third subpopulation of
keratinocytes consists of suprabasally located termin-

ally differentiated cells that do not express b1-integrin

and have lost the ability to divide.

Keratinocytes form a phenotypically and functionally

heterogeneous population. In cell culture, three types

of colonies are formed. The first type are holoclones,

which are characterized by a high proliferative potential

without terminal differentiation. The second type are

the paraclones, which have a limited dividing capacity

and undergo terminal differentiation afterwards. The

third group is formed by the meroclones that are sup-

posed to form a transitional stage between holoclones

and paraclones (13, 14). Furthermore, cell adhesion

assays showed that keratinocytes that adhered most

rapidly to type IV collagen and fibronectin have a higher

colony-forming efficiency than slowly adhering cells (3,

5, 15, 16). On the basis of these morphologic and

qualitative differences, it was hypothesized that epi-

dermal subpopulations also differ with respect to cell

kinetic characteristics. Previous studies already showed

that the growth potential of b1-integrin bright cells

exceeds that of the dim cells (3, 4, 17). Our goal in this

study was to characterize epidermal subpopulations on
the basis of phenotype and to define different epidermal

subpopulations with regard to cell kinetic features.

Therefore, we made use of small human skin punch

biopsies, which allow the use of human clinical material

without considerable discomfort for the patient. The

punch biopsies were processed to single cell suspen-

sions that were sorted flow cytometrically on the basis

of b1-integrin expression. Subsequently, growth char-

acteristics of b1-integrin dim and bright cells in cell

culture were determined by means of image analysis.

With this combination of flow cytometry, cell cul-

ture and image analysis we investigated whether the
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b1-integrin dim and bright populations behave differ-

ently with respect to the number of colonies formed,

start of colony formation and growth rate.

MATERIALS AND METHODS

Biopsy procedure

Residual human skin from abdominoplasty was obtained
from women aged 28 – 65 years. Pieces of skin from about
4 cm square were kept in MEM (Eagles, 25 mm Hepes
with Earle’s salts, without L-glutamine) (Gibco BRL, Life
Technologies, New York, USA) with 1% v/v antibiotic-
antimycotic solution (Gibco) for a maximum of 8 days at
4‡C. Ten punch biopsies with a diameter of 4 mm were taken
from this material.

Cell isolation and labelling procedure

Biopsies were kept in phosphate buffered saline (PBS)
containing 2.5 mg/ml trypsin (Difco Laboratories, Detroit,
MI, USA) at 4‡C for 16 – 20 h; 10% fetal calf serum (Harlan
Sera-Lab, Loughborough, UK) was added and the dermis
and epidermis were separated with tweezers. The epidermis
and dermis were gently mixed on a vortex. After the stratum
corneum was removed, the cells were pelleted and the super-
natant was discarded. Subsequently, the pellet of cells was
resuspended and labelled with 3250 ml of K20-FITC (DAKO,
Copenhagen, Denmark), an antibody directed against b1-
integrin which was diluted 1:20. Afterwards, cells were washed
with PBS/1% fetal calf serum and centrifuged for 5 min at
1000 g. After discarding the supernatant, the pellet was
resuspended and the cells were sorted.

Cell sorting

The labelled cells were sorted by an EPICS1 Elite flow
cytometer (Coulter, Luton, UK), equipped with an autoclone
unit. A bandpass filter of 515 – 535 nm (green, FITC) was
used to measure emitted light. A gate in the right angle scatter
(a measure of regularity) versus forward scatter (a measure of
size) diagram was used to exclude debris. Gates in the FITC
expression versus forward scatter diagram were used to sort
the b1-integrin-positive cells. Control samples consisted of cell
suspensions in which the primary antibody was omitted.
Based upon the measurement of these controls, gates were set
in such a way that if a primary antibody was omitted, the
proportion of the fluorescence-positive signal for this omitted
antibody was between 0% and 1%. Isotype antibody controls
were performed when the staining procedure was initially set
up; however, the pattern was so clear that this was omitted in
further experiments (18).

The 10% of cells that were least positive were defined as the
b1-integrin dim cells and the 10% of the cells that were most
positive were classified as the bright cells (Fig. 1). This was
done to avoid overlap between the subpopulations. In each
experiment, a 96-well plate was filled with 150 b1-integrin dim
cells per well and another was filled with 150 b1-integrin
bright cells per well. This was carried out in five consecutive
experiments in triplicate or (in one experiment) in duplicate.

Cell culture

Sorted keratinocytes were seeded on lethally irradiated
(3000 rad, 3.2 min) Swiss mouse 3T3 fibroblasts according
to the Rheinwald-Green system (19). The cells were cultured

in DMEM/F12 (3:1, v/v, Bio Whittaker, Walkersville, MD,
USA) supplemented with 0.4 mg/ml hydrocortisone (Brunschwig
Chemie BV, Amsterdam, The Netherlands), 1026 M iso-
proterenol (Sigma, St Louis, MO, USA), 100 i.u./ml penicillin
and 100 mg/ml streptomycin (Gibco Laboratories, Breda,
The Netherlands), 6% fetal calf serum (Harlan Sera-Lab,
Loughborough, UK) and 10 ng/ml epidermal growth factor
(Sigma). After sorting, the 96-well plates were placed in an
incubator at 37‡C, 95% humidity and 8% CO2 in air.

Image analysis

From the moment colonies were visible, they were recorded
three times a week using a Zeiss (Thornwood, NY, USA)
Axiovert 35M inverted microscope equipped with a 106/0.3
Ph1 bright phase contrast objective connected to a 5126512
video camera (HCS MX5, DIFA, Breda, The Netherlands).
Signals were digitized with Scion CG-7 or Pixel Pipeline frame
grabbers in a Macintosh workstation (G4 or Quadra 800).
The wells of a 96-well plate were positioned with an EK8b
MTP scanning table (Marzhauser, Wetzlar, Germany) manually
controlled by the operator. The images of the wells were
stored in a microprocessor. Scion Image for Windows beta
4.0.2 (Scion Corporation) was used to analyse the recorded
images. In this program cells were manually marked by the
investigator.

Statistical analysis

Regression analysis was used to relate the increase in cell size
of the b1-integrin bright subpopulation to age; in this way
colony size was converted to cell number. To compare the

Fig. 1. Gates in the FITC expression vs forward scatter (FS) dia-

gram were used to sort different b1-integrin subpopulations. The

10.9% of cells that were least positive were defined as the b1-integrin

dim cells and the 10.8% of the cells that were most positive were

classified as the bright cells.
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number of colonies formed, an analysis of variance (ANOVA)
with repeated measurements was performed.

RESULTS

All colonies that were formed in five consecutive experi-

ments, with cells from five different donors, were

followed for 28 or 29 days. The first colonies were

detectable from the 10th day after seeding and from

that time point all colonies were counted and recorded

three times a week. At day 14 the first colonies began to

reach confluence. An example of the colonies formed is

shown in Fig. 2.
To determine growth characteristics, we first inves-

tigated whether cell size differed when colonies grew

older. Area and cell number of representative colonies

at different time points were measured. A calibra-

tion curve was made from one series of b1-integrin dim

and one series of bright cells from each experiment.

Subsequently, the relationship between cell size (i.e.

area divided by number of cells in a colony) and age of
a colony (i.e. number of days after seeding) was deter-

mined. For the b1-integrin dim subpopulation it turned

out that cell size was independent of the age of the

colony. This meant that it was sufficient to measure

area because the number of cells in the colony could

be read from the calibration curve. In contrast, in the

b1-integrin bright subpopulation cell size increased

when colonies became older. For that reason a formula

was created that comprises a factor that corrects for age

of the b1-integrin bright colony when area was con-

verted into cell number.

We found that the number of colonies in the

b1-integrin dim subpopulation exceeded that in the

bright subpopulation (ANOVA, repeated measure-

ments, revealed a borderline significance, p~0.05). In

both groups the number of colonies increased until

confluence was reached; from that moment on some

colonies were indistinguishable from each other and

were counted as one. In Fig. 3A a typical example of

the number of colonies in the b1-integrin bright and

dim subpopulation is shown, whereas Fig. 3B is an

overview of all experiments presenting the number of

colonies formed 15 days after seeding in the b1-integrin

dim and bright subpopulation on a logarithmic scale.

Before growth characteristics could be determined,

all useful colonies were selected: colonies that were

Fig. 2. Example of a small colony that enlarges.

Fig. 3. (a) A typical example which illustrates that the mean number of colonies formed in the b1-integrin dim subpopulation (squares)

exceeds that in the bright subpopulation (diamonds). (b) An overview of all experiments presenting the number of colonies formed in the

b1-integrin dim and bright subpopulations 15 days after seeding on a logarithmic scale.
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recorded only once and those that touched each other

or the rim were eliminated. Thus, 199 colonies in the

b1-integrin dim subpopulation and 222 colonies in the

b1-integrin bright subpopulation were available for
analysis. First the moment of start of colony formation

was compared in both subpopulations. When we com-

pared the moment at which colonies consisted of 100

cells no differences were found between colonies in the

dim and bright subpopulation.

As a measure of growth rate the increase in the

number of cells of a colony divided by the time in

which the increase took place was determined. Statis-

tical analysis showed that colonies in the b1-integrin
dim subpopulation grew significantly faster than those

in the bright subpopulation (t-test, p~0.008). An example

of growth curves of b1-integrin dim and bright cells is

shown in Fig. 4.

DISCUSSION

In the present study, phenotypic and functional dif-

ferences between b1-integrin bright and dim cells were

determined with the use of flow cytometry, cell culture

and image analysis. With a combination of these

methods it was shown that cell size increased with age

in the b1-integrin bright subpopulation. Furthermore,
the number of colonies formed and their growth rate in

the b1-integrin dim subpopulation exceeded that in the

bright subpopulation. With respect to start of colony

formation no differences were found.

A remarkable finding for colonies in the b1-integrin

bright subpopulation, which harbours the putative stem

cells, was that cell size increased when colonies aged.

This was different from results in another study in
which single unfractionated keratinocytes were inocu-

lated and which showed a constant cell size over a large

range of colony sizes (15). The difference in our study

can be explained by the difference in age between TAC

in the b1-integrin bright subpopulation (which are

young TAC derived from ESC that were initially

seeded) and those in the b1-integrin dim subpopulation

(which were already older TAC when they were

seeded). It is known that cells in the basal compart-

ment, which comprises the putative ESC, are small and

that the suprabasal ones progressively enlarge when

they move upwards and differentiate. This means that

young TAC in the b1-integrin bright subpopulation

enlarge when they become older (13, 20), whereas the

older TAC in the dim subpopulation will not

considerably increase in size.
The number of colonies in the b1-integrin dim

subpopulation exceeded that in the bright subpopula-

tion. This can be explained by the difference in cell

cycle time between ESC and TAC: it will take longer

before the first TAC arises from a slowly cycling ESC

than from the TAC that was seeded in the b1-integrin

dim subpopulation. This means that the TAC in the

dim subpopulation could divide more frequently and

form more colonies than TAC that are derived from

ESC in the span of time of this experiment. An earlier

study showed that cells with the strongest expression of

b1-integrin had a higher colony-forming efficiency after

14 days than cells with a low level of b1-integrin (3).

With respect to the start of colony formation

no differences were found between colonies in the

b1-integrin dim and bright subpopulation. This could

be because it was impossible to detect colonies at an

early stage: until day 10 we were not able to detect

colonies by bright field microscopy. The first colonies

that were detected already comprised at least 20 cells.

As TAC have a shorter cell cycle time, the period

between seeding of the cells and the first cell division

must be shorter than that for the ESC in the b1-integrin

bright subpopulation. Therefore, colony formation in

the b1-integrin dim subpopulation is expected to start

earlier than that in the bright subpopulation. In order

to detect small colonies earlier, we labelled them with

fluorescent dyes that are suitable for viable cells. SYTO

13, a cell-permeant nucleic acid stain, and carboxy-

fluorescein diacetate succinimidyl ester (CFSE), an

intracellular covalently coupling dye, were tested. A

clear distinction between small colonies – which were

hardly detectable by bright-field microscopy – and

feeder cells was present (Fig. 5). SYTO13 has been

described as a useful dye for other cell types (21), but it

turned out that keratinocytes could not stand the

required concentration. In studies with lymphocytes the

use of CFSE has been described as a dye that allows

long-term tracking of lymphocytes (22 – 24). However,

we did not succeed in labelling keratinocytes with this

dye.

When growth rates were compared, it was found that

colonies in the b1-integrin dim subpopulation grew

faster than those in the bright subpopulation. This

could be explained by the presence of ESC, with a long
Fig. 4. Representative growth curves of the b1-integrin dim cells

(&) and bright cells (#).
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cell cycle time, in the b1-integrin bright subpopulation.

Although the predominant replicating cell in tissue as

well as in culture is the TAC (14), it takes longer in the

b1-integrin bright subpopulation until the first TAC

arises from a ESC than for the first TAC to arise from

another TAC in the b1-integrin dim subpopulation. The

presence of ESC in the b1-integrin bright subpopulation

increases the mean cell cycle time and therefore decreases

the mean growth rate of the colonies.
The short duration of the experiment, 28 or 29 days,

imposes a restriction on this study. This also applies to

the 96-well plates that were used: because of the small

surface of a well, confluence or contact inhibition was

reached early. As ESC have an unlimited proliferative

potential, the number of colonies in the b1-integrin

bright subpopulation is expected to exceed that in the

dim subpopulation when time and space are not limiting

factors.

There is no consensus on the use of b1-integrin as a

marker to distinguish TAC and ESC: some studies state

that a two- to three-fold difference in integrin levels is

present on the surface of ESC and TAC (1, 12). In

contrast, others report that both ESC and TAC express

high levels of b1-integrin (8). From earlier studies it is

known that 25 – 50% of the basal cells exhibit high

b1-integrin expression (12, 25, 26). As maximally 10%
of all basal cells are supposed to be ESC (8, 12, 25 – 30),

it can be concluded that only a fraction of the b1-

integrin bright cells are ESC. This conclusion is sup-

ported by the finding that only 25% of the keratinocytes

in integrin-bright patches in foreskin are clonogenic

(31). For that reason a further refinement of the technique

used, by combining b1-integrin with other potential

ESC markers, will be useful for a narrower definition of

putative ESC.

Selective sorting and culturing of keratinocytes forms

the basis for studies on the role of epidermal ESC with

respect to therapeutic intervention and gene therapy.
The application of small punch biopsies allows use of

human skin with only minimal inconvenience for the

patient in the future. The present study shows that a

combination of flow cytometry, cell culture and image

analysis offers the opportunity to characterize sub-

populations of epidermal human keratinocytes pheno-

typically as well as functionally. Our findings support

the concept that the b1-integrin bright fraction har-
bours the putative ESC and that the b1-integrin dim

cells contain predominantly TAC.
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