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The In vitro Activity of Pentane-1,5-diol against Aerobic Bacteria.
A New Antimicrobial Agent for Topical Usage?
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Multi-resistance to antibiotic therapy and to biocides is

becoming increasingly common, which has led to mounting

concern worldwide regarding the future use of traditional

antimicrobials. Diols or glycols also have antimicrobial

effects. Pentane-1,5-diol has low oral toxicity, is essen-

tially non-irritating to the skin and has high antimicrobial

activities against bacteria, fungi and viruses. The effect of

pentane-1,5-diol against both sensitive and multi-resistant

Gram-positive and Gram-negative bacteria was tested in
vitro against 85 bacterial strains showing minimal

inhibitory concentrations in the range of 2.5 to 15.0%

(vol/vol) against both antibiotic-susceptible and multi-

resistant aerobic bacteria. The exact mechanism of action

is unknown but probably pentane-1,5-diol sucks water out

of the bacterial cells which then collapse, a mechanism to

which it is probably very difficult to develop resistance.

The high activity against multi-resistant bacteria makes

pentane-1,5-diol an interesting new compound for topical

antimicrobial therapy in humans. Key words: diols;
antimicrobial agents; antibiotics; multi-resistance.
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Worldwide, there are increasing problems with multi-

resistant bacteria. Such problems are particularly

evident in hospitals, where they frequently present as

nosocomial outbreaks. The most important nosocomial

resistance today is caused by methicillin-resistant

Staphylococcus aureus (MRSA) (1, 2), vancomycin-

resistant enterococci (VRE) (3, 4) and Enterobac-

teriaceae with extended-spectrum beta-lactamases (5,

6). In addition, MRSA can also be resistant to

aminoglycosides, often also to fluoroquinolones, and

most other antibiotics (7, 8). Some strains are even

becoming resistant to the glycopeptides (7). These multi-

resistant clones of S. aureus often occur as epidemic

strains. Moreover, the VRE are also appearing as multi-

resistant strains which are often resistant to almost all

antibiotics (3, 4). These bacteria are mainly spread by

person-to-person contact (9, 10). Recently clonal spread

of one strain of S. aureus resistant to fusidic acid has

been observed in Sweden, Denmark and Norway,

mainly among patients with bullous impetigo (11, 12).

There are also reports of fusidic acid-resistant S. aureus

from the UK, Canada and Japan (13). Patients with

regular impetigo, atopic dermatitis and other skin

infections may also harbour S. aureus strains resistant

to fusidic acid (13, 14). International spread of S. aureus

strains resistant to mupirocin has also been reported (2).

The use of non-antibiotic antimicrobial agents or

biocides might be an alternative to antibiotics but may

pose problems (15–17). The development of bacterial

resistance to anilides (e.g. triclocarban) (15–17), bis-

phenols (e.g. triclosan) (15–19), quaternary ammonium

compounds (primarily chlorhexidine chloride and cetri-

mide) (15–21), iodine and benzalkonium (15–18) has been

described. However, biocides also act non-specifically

and against broader targets than antibiotics. Agents such

as alcohol and chlorhexidine produce a denaturation of

cytoplasma proteins and coagulation of cell contents (15).

The bactericidal action of biocidal agents that exhibit

surface-active properties, such as the quaternary ammo-

nium compounds, and phenols, results from a generalized

disruption of the cell membrane (15). Bacteria that are

resistant to both biocides and antibiotics have been

found, for example, in patients with leg ulcers (15, 18).

Diols or glycols are used as solvents, as anti-freezing

agents or as vehicles in pharmaceutical preparations and

some of them have antimicrobial effects (22–24). So far

propane-1,2-diol (propylene glycol) is the only diol

widely used in clinical dermatology. It is used in the

treatment of patients with pityriasis versicolor,

Pityrosporum folliculitis and seborrhoeic dermatitis (25).

Pentane-1,5-diol is active against herpes virus (EP

0 479 850 B1 and US patent 5, 369, 129). The activity

against various bacteria and fungi, compared with that

of propane-1,2-diol, is also described in these patents.

Pentane-1,5-diol was two to three times more active

than propane-1,2-diol. An in vitro laboratory study of

certain diols showed that the antimycotic activity of

diols or glycols was increased with an increasing length

of the carbon chain (24). There are a few old reports of

the activity of diols, including pentane-1,5-diol against

non-pathogenic bacteria (26). However, it is not possible

to draw any clear conclusions from these reports.

The aim of the present investigation was to study the

antibacterial activity in vitro of pentane-1,5-diol against

antibiotic-susceptible and resistant aerobic bacteria.
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MATERIALS AND METHODS

Bacterial strains

Seventy recent clinical isolates and 15 strains from the Culture
Collection University of Gothenburg (CCUG), Sweden
(www.ccug.gu.se) were tested. The strains belonged to 11
bacterial groups: methicillin-susceptible S. aureus (MSSA),
MRSA, coagulase-negative staphylococci, alpha-haemolytic
streptococci, beta-haemolytic streptococci, enterococci,
Escherichia coli, Enterobacter spp., Acinetobacter spp.,
Pseudomonas aeruginosa and Stenotrophomonas maltophilia.
The following strains from the CCUG were tested: MRSA
33115, 38266, 41787, 45007, 45008, 46463, 46618, 46740,
46870, 47019 and Enterococcus faecium van A 37832, 39128,
43324, van B 37593. One CCUG strain of P. aeruginosa was
also included: 17619.

Minimum inhibitory concentrations

The minimal inhibitory concentrations (MICs) were deter-
mined using the agar dilution method according to the SRGA
(www.srga.org). Pentane-1,5-diol with a purity of 98.5% was
obtained from Merck Schuchardt, Hohenbrunn, Germany.
Pentane-1,5-diol was added to Paper Dish Method agar
medium (AB Biodisk, Solna, Sweden) giving final concentra-
tions of 2.5, 5.0. 7.5, 10.0, 12.5, 15.0, 17.5 and 20.0% (vol/vol).
For growth of streptococci the medium was supplemented with
5% defibrinated horse blood. The plates were inoculated using
a multipoint inoculator A 400 (Denley, Sussex, UK). The
inoculum effect was tested at 103 and 105 colony forming units
(cfu)/spot. Incubations were done overnight at 35–37 C̊.

RESULTS

Pentane-1,5-diol was effective against all bacterial

strains tested with MICs ranging from 2.5 to 15.0%

using an inoculum of 103 cfu (Table I). The lowest value

of 2.5% was found for two strains of Acinetobacter spp.

and one strain of S. maltophilia. The highest value was

seen in only one strain of a coagulase-negative

Staphylococcus. With a higher inoculum of 105 cfu the

MIC generally increased one step, e.g. from 7.5% to

10.0% (data not shown). MICs were higher for the

staphylococci and lowest for the enterococci and Gram-

negative rods. There was no difference in activity

of pentane-1,5-diol against antibiotic-sensitive and

-resistant bacteria (Table I).

DISCUSSION

Infections caused by multi-resistant bacteria have become

a major problem in health care (1, 2, 9, 10, 27). In order to

manage such bacterial infections in health care and to

provide well tolerated alternatives for topical antimicro-

bial treatment in humans and other mammals, treatments

and solutions for antiseptic use with compositions

containing antimicrobial diols provide a new opportunity.

Pentane-1,5-diol (C5H12O2) is a viscous oily liquid

(22). Its molecular weight is 104.15. Freezing point is

218 C̊, boiling point is 238–240 C̊ and flash point

is 125 C̊. The specific gravity is 0.9925. Pentane-1,5-diol

is miscible with water, methanol, ethanol, acetone, ethyl

acetate and ether. There is limited solubility in benzene,

trichloroethylene, methylene chloride, petroleum ether

and heptane. Pentane-1,5-diol is used as plasticizer in

cellulose products and adhesives, in dental composites

and in brake fluid compositions (22, 23, 26). It is also

used as a preservative for grain (28). Pentane-1,5-diol
has a low oral toxicity; LD50 for rats is 5.89 g/kg and

LD50 for rabbits is greater than 20 ml/kg (22, 23). It is

essentially non-irritating to the skin and only very

mildly irritating to the eyes (22, 23). The metabolism of

pentane-1,5-diol was studied in four rabbits (23). The

animals were given 8.5 g of oral pentane-1,5-diol. There

was no presence of any unchanged pentane-1,5-diol in

the urine. However, small amounts of glutaric acid as a
metabolic product were found in the urine when the

rabbits were given pentane-1,5-diol. Glutaric acid was

quickly metabolized to carbon dioxide (29).

The results obtained in this study demonstrate that

pentane-1,5-diol is effective in vitro against several

different groups of bacteria including multi-resistant
bacteria. The inoculum effect tested at 103 and 105 cfu/

spot is low.

In a cream formulation, successfully used in the

treatment of patients with atopic dermatitis (unpub-

lished data), we have incorporated 25% of pentane-1,

5-diol. The exact mechanism of action of pentane-1,

5-diol is unknown but like polyethylene glycol it may act
by sucking water out of the cells, a mechanism to which

it possibly is very difficult to develop resistance.
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Table I. Minimum inhibitory concentrations (% vol/vol) of

pentane-1,5-diol to 85 bacterial strains tested by agar dilution

technique at 103 cfu/spot.

Bacterial species n Mean (range) Median

Staphylococcus aureus, MSSA 11 12.0 (10.0–12.5) 12.5

Staphylococcus aureus, MRSA 10 11.0 (7.5–12.5) 12.5

Coagulase-negative staphylococci 10 8.8 (5.0–15.0) 7.5

Alpha-haemolytic streptococci 5 6.5 (5.0–7.5) 7.5

Beta-haemolytic streptococci

group A 5 7.5 (7.5) 7.5

group C 3 9.2 (7.5–10.0) 10.0

group G 5 8.0 (7.5–10.0) 7.5

Enterococcus spp. 9 6.4 (5.0–7.5) 7.5

Escherichia coli 5 5.0 (5.0) 5.0

Enterobacter spp. 5 5.0 (5.0) 5.0

Acinetobacter spp. 6 4.2 (2.5–5.0) 5.0

Pseudomonas aeruginosa 5 6.0 (5.0–10.0) 5.0

Stenotrophomonas maltophilia 5 4.5 (2.5–5.0) 5.0

All strains 85 7.7 (2.5–15.0) 7.5

MSSA, methicillin-susceptible S. aureus; MRSA, methicillin-resistant

S. aureus.
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